Face recognition systems
abstract
The primary goal of the FRGC was to promote and advance face recognition technology designed to support existing face recognition efforts in the U.S. Government. FRGC developed new face recognition techniques and prototype systems while increasing performance by an order of magnitude. The FRGC was open to face recognition researchers and developers in companies, academia, and research institutions. FRGC ran from May 2004 to March 2006.
The FRGC consisted of progressively difficult challenge problems. Each challenge problem consisted of a data set of facial images and a defined set of experiments. One of the impediments to developing improved face recognition is the lack of data. The FRGC challenge problems include sufficient data to overcome this impediment. The set of defined experiments assists researchers and developers in making progress on meeting the new performance goals.
There are three main contenders for improving face recognition algorithms: high resolution images, three-dimensional (3D) face recognition, and new preprocessing techniques. The FRGC is simultaneously pursuing and will assess the merit of all three techniques. Current face recognition systems are designed to work on relatively small still facial images. The traditional method for measuring the size of a face is the number of pixels between the centers of the eyes. In current images there are 40 to 60 pixels between the centers of the eyes (10,000 to 20,000 pixels on the face). In the FRGC, high resolution images consist of facial images with 250 pixels between the centers of the eyes on average. The FRGC will facilitate the development of new algorithms that take advantage of the additional information inherent in high resolution images.
Three-dimensional (3D) face recognition algorithms identify faces from the 3D shape of a person's face. In current face recognition systems, changes in lighting (illumination) and pose of the face reduce performance. Because the shape of faces is not affected by changes in lighting or pose, 3D face recognition has the potential to improve performance under these conditions.
In the last couple years there have been advances in computer graphics and computer vision on modeling lighting and pose changes in facial imagery. These advances have led to the development of new computer algorithms that can automatically correct for lighting and pose changes in facial imagery. These new algorithms work by preprocessing a facial image to correct for lighting and pose prior to being processed through a face recognition system. The preprocessing portion of the FRGC will measure the impact of new preprocessing algorithms on recognition performance.
The FRGC improved the capabilities of automatic face recognition systems through experimentation with clearly stated goals and challenge problems. Researchers and developers can develop new algorithms and systems that meet the FRGC goals. The development of the new algorithms and systems is facilitated by the FRGC challenge problems.
What is your opinion about this seminar topic ? Do you like it..... You can express ideas about this topic ....................
Related topics
IT IS really Good topic